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SUMMARY

The purpose of the reported research is to study the
dynamics and control of a class of large antenna/reflector
systems in orbit which are also partially stabilized using a
tether-connected subsatellite. The initial focus Las been
in the development of the system's equations of motion
linearized about the equilibrium position where the
reflector's (shell's) symmetry axis nominally follows the
local vertical. The shell roll, yaw, tether out-of-plane
swing motion and out-of-plane elastic vibrations are
decoupled from the shell and tether in-plane pitch motions
and in-plane elastic vibrations. It is proved that the in-
plane motion of the system could be asymptotically stable
based on Rupp's tether tension control law based only on
length and length rate information. However, the transient
responses can be improved significantly (especially for
damping of the tether and shell pitch motion) by using an
optimal tension feedback control law. Wwhen tether
flexibility is included tension control law gains must be
carefully selected in order to preserve stability. System

transient responses could be further improved by including

the state feedback of the tether vibrational modes into the ror

I
optimal tension control law. ‘
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In order to prepare for an extension of this study to

simulate the deployment or retrieval dynamics, a literature -on/
ity Codzs
survey including a brief comparison of control laws proposed . aad/or |
selal
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by different investigators has been completed. Recommen-
dations are made concerning the suitability of the various
control laws for use with the orbiting tethered reflector

system.

Finally a preliminary model of the nonlinear dynamics of the
tethered antenna/reflector system in orbit has been obtained
based on Lagrangian techniques. It is seen that, unlike the
situation for the system linearized about the nominal
stationkeeping motion, the in-plane and out-of-plane motions
are coupled through second order, and nonlinear coupling
terms also depend on tether line swing motions and tether
vibrations. For this preliminary model the shell is

considered to be a rigid structure.
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1. INTRCDUCTION

1.1 Feasibility of Concept based on Existing Work

Since the early 1970's a number of very large space antennas
have been proposed for power transmission, astronomical
research and communications. The gravity stabilized
configuration 1s particularly suited for a very large
flexible structure to alleviate the problems associated with
the active attitude control of very large structures. The
structural feasibility of a very large Earth oriented
antenna, where the flexible reflector contour is maintained
by adjusting the length of connecting tethers between the
reflector and feed panels, has been discussed.(l] 1In this
paper the stress analysis of the tethered antenna was given.
The analysis of the dynamics and control of the orbiting
flexible shallow spherical shell and various tether
connected systems in space have beelnl performed. Bainum and
Kumar(2l have investigated the dynamics of an orbiting
flexible shallow spherical shell with a dumbell connected to
the shell at its apex by a spring~loaded double-gimball
jcint to provide the faverable composite moment of inertia
distribution. Also, Bainum and Reddy[3] have investigated
the shiape and orientation control of this shell antenna by
including some additional active control elements.

Numerical resuits verify that a significant savings in fuel
zcnsumption can be realized by using the hybrid shell-

cumbell system together with the ({active) point actuators.




The purpose of the proposed research is to study the
dynamics and control of a class of large antenna/reflector
orbiting structures which include an articulated tether
connected supporting structure to provide the favorable
moment of inertia distribution for over-all gravitational
stabilization together with some active actuators. There
are two possible proposed subsystems which could provide the
connection between the tether and the shell reflector; one
involves a spring-lcaded doubled-gimballed joint connected
to the shell's apex and through which the tether is
deployed/retrieved {(Fig. 1l); the second contains a join*t at
the end of a rigid boom which is attached to the shell's
apex (Fig. 2). Through the end joint the tether would ke
deployed or retrieved. The tether tension could be used for
producing restoring torques on the shell, with natural
damping provided in the joint assembly. For the first phase
of the study reported here the second subsystem has been
taken as the basis for the system model due to the
relatively simpler implementation as compared with the

double~-gimballed joint in the first subsystem.

1.2 Relevance to SDI

Associated with the capability to orient a large flexible
antenna/reflector type of device accurately while at the
same time maintain the surface shape tc within centimeters
or even millimeters are many applications in both the
military and zi71lian fields. For example, high energy

2
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beams can be generated by a power source and reflected from
specific known points on the reflector surface to
preselected targets. In the very important communications
field, such an antenna surface can receive multibeam
communication waves from electronic feed devices and
transmit these to a variety of small mobile receivers to
comprise strategic communication links during early,
critical phases of an attack when larger, fixed land-based
antennas would be far more vulnerable to observation/damage.
Such devices could also be employed to transmit coded
electronic mail rapidly over different communication

channels.
1.3 Outline of the Research Reported

The second chapter focuses on the development of the linear
system equations of motion for an orbiting tethered shallow
srherical shell system where the shell's axis of symmetry
nominally follows the local vertical. The Newton-Euler
method for a continuous system is adopted here. The seccond
objective is to develop the in-plane and out-of-plane
stability conditions and introduce some tension control laws
for in-plane motion control. The transient responses will
be ccmpared for three different tension control laws during
tyrical station keeping operations. A paper based on these
tasks was presentec at the Third International Conference on

Terhers in Space, San Francisco, Masv 17-19, 1989 and has




been accepted in slightly revised format for publication in

The_ Journal. of tbhe Astronautical sSciences..

The following chapter describes a comprehensive review of
the steps in the development of control laws for Shuttle or
platform connected tethered subsatellite systems.
Deployment, stationkeeping, and retrieval control strategies
are reviewed and compared. Finally, recommendations are made
suggesting the relative suitability of the different control
laws for adaptation with the proposed orbiting tethered

reflector systems.

Chapter Four concentrates on the development of the
nonlinear equations of motion for the tethered reflector
system in orbit in a form suitable for simulasting
deployment and/or retrieval maneuvers based on some of :he

control laws described in Chapter Three.

Finally, Chapter Five summarizes some concluding statements

and follow-on plans for the continuation of this general

area of research.




2 DYNAMICS AND CONTROL OF A TETHERED ANTENNA/REFLECTOR
IN ORBIT
2.1 Introduction

Since the early 1970's a number of very large space antecnnas have been
proposed for power transmission, astronomical rescarch and communications.''’ The
gravity stabilized configuration is particularly suited for very large flexible systems
to alleviate the problems associated with thc active attitude control of very large
structures. Bainum and Kumar'®' have investigated the dynamics of an orbiting
flexible shallow spherical shell with a dumbbecil conneccted to the shell at its apex
to provide the favorable compositc moment of inertia distribution. Also, Bainum and
Reddy'*' have investigated the shape and orientation control of this shell antenna
by including some additional active control clements. Mcanwhile, scores of
applications of tethers in space have been proposcd and analyzed including some
space platform-based applications of the tcther subsatcllite system.'*"*!

The objective of the present paper is, [irst, to develop a system mathematical
model of a class of large anten.a/reflector orbiting siructures which include an
articulated tether-connected suppcrting structurc to provide the favorable moment
of incrtia distribution for over-all gravitational stabilization, together with some
active actuators. The tether would be connected at the end of a rigid boom which
is attached to the shell’s apex and through the cnd of the boom the tcther could
be deployed or retrieved (Fig.3). The tether tension could be usced for producing
restoring torques on the shell. The sccond objective is 1o develop the in-plane and

out-of-plane stability conditions and introducc some tension control laws [or in-plane




.,

motion control. The transient responses for the three different tension control laws

will be compared during typical station keeping opcrations.

2.2 Equations of Motion

For system modelling the following assumptions were made:

1) The thickness of the shell is small as compared to the height of the shell,
and the ratio of the height to the base radius is much less than unity ( condition
for shallowness ).

2) The elastic deformations perpendicular to the svmmetry axis( i.e.,X axis ) of
the shell are negligible compared with the deformations parailel to the symmetry
axis, i.e., only transverse vibrations are considered.

3) The symmetry axis of the shéll is nominally alcng the local vertical.

4) The center of mass of the system is moving‘in a circular orbic.

5) The flexibility of the boom is neglected.

6) The subsatellite is to be considered as a point mass.

The shift of the center of mass of the svstem will be considered. In order to
develop a general model for the tethered shcll svstem it is assumed that the
massive, flexible tether is deploying or retrieving 2 suhsatellite at a distance, , from
a point on the shell which is offset by distance h.. h,. h,. along the yaw, pitch,

and roll axes, respectively, from the center of mass of the shell. O,.




Santini'*’, Bainum and Kumar'’' have deveioped a mathematical formulation for
a general orbiting flexible body based on the Newton-Euler method and continuum
approach. In the present paper this method will be cxtended to the system
composed of two flexibie structures ( the shell and the tethered subsatellite ).

The coordinate systems used in the development of the system equations of
motion are shown in Fig.4. O,X,Y.Z, is an orbit-fixed reference frame centered at
the center of the mass of the shell, O,, with O,X, along the local vertiqal and O,Y,
along the orbit normal opposite to the angular velocity vector. O,X,Y,Z, is an
undeformed shell reference frame. R,, where O,X,, O,Y.. O,Z, are the principal axes
of the shell. OXYZ is the subsatellite-undeformed tcther reference frame. R,, with
OX along the undeformed tether line, where O is thc point from which the tether
is deploying or retrieving. The coordinates of O in thc shell frame, R,, are h, h,,
h,.

The angles » , 8 . ¢ are the vaw. pitch and roll angles of the shell.
respectively. An Euler angle rotation sequencc of: (1) ¥ . (2) @ , and (3) ¢ is
assumed from the O,%,Y,Z, system to the O,X.Y.Z, svstcm.

The transformations from O,X,Y,Z, to O,X,Y.Z, and from O,X,Y,Z, to OCXYZ

are assumed to be given bv

sdci+edsdsy
edeh=spsisy

-c3 sy

-~

scsw-cﬁsecwl

cosu+sdsdel| |y,

-
Eolall)
IT3Y .

CoL

X, ]

Z, |

(1)




[XYZ] = T@y [X. Y.Z T

where
-CYed SY sacy
T(a,Y) = SYyea ¢y -sasy
-sq 0 =co
where c »cosine (), s =sine ()

(2)

. - . . N\
Consider an elemental mass, dm, whose instancous position vector from the

center of the shell, O,, is r (Fig.4). The equation of motion for dm can be written

as'’
adm = L(qQ) + fdm + ¢ dm
where a = inertial acceleration of dm
q = elastic displacement vector of dm
L(q) = elastic forces acting on dm

f = gravitational force per unit mass

e = external forces acting per unit mass
The gravity force in the shell frame, R,, is given hy*"!"

T=7F +Mr

where f, is the gravity force at O, expressed in the Irame.

-

Je?he29-1 -3socdcdd  3ededsd
M wg -35¢c¢c23 3825c28-] =3s¢c23d
ehs8ed -3s50c3s3 3s23-1

where <, s the orbital angular veloctuy.

3

(3

(4)
R,. and

(5)




The vector equation, f(3), can be written in the frame, R,, as

(ay-Fy+r +2ixr+ax(@xT)+axr-4r] du-L(q)~edn = 0 (6)
where r, r are the velocity and acceleration of dm. respectively, as seen from

the frame, R,, and w is the angular velocity of the frame R,.

@ 886+ coct—w_( sbciredsdsy) |
0 = my 2 8cd - Usdcs -mc( cdcy-sdsfsy ) (7N
| ®, d.H- liase ﬁnc codsy

It is well known that for some applications, for example, for the tethéred Shuttle
subsatellite system, the mass of the Shuttle is much greater than that of the
tethered subsatellite, so the center of mass of the Shuttle can be considered to be
the mass center of the whole system and the shift of the center of mass of the
system can be neglected i.e. 5,-a=0 in equation (6). However, in our system the
shift of the center of mass of the system will bc considered and, in general,
5,-?,*-50; it will be calculated in the development.

After projecting cquation (6) on the tether frame. R,. the following is obtained

(ag-Zy) | C+T[%+2mxr+umr-4mx(5x?) -Mr]da-L(q) | -e] dm=0 (8)

where |, indicates the projection onto the frame. R..
The expression of the r of the tether swvstem is different from that of the shell
due to relative motion of the tether, so we consider the tethered subsatellite system

and the shell, separately.

Tethered subsatellite system

T =T+ h * q (9)

10




where T, = ( X+u, v, w) (10)
is the position vector of dm from O projected onto the frame, R., u represents the
tether’s longitudinal elastic displacement. v, w rcprescnt the displacements in the
orthogonal directions transverse to the OX axis.

h= ( h, h,, h,) is the position vector of point O from the shell’s center of

mass, O,.

N

q.°=(u.., 0, 0) is the shell’s elastic displacement vector of the apex of the shell

(according to the assumptions there is only clastic displacement along the X, axis).

Hence, T = (TH ;, + :q-, + (T’WE (1y
r= (T + AT + (TH 7+ q, (12)

Let [ Q -, f.uy i
(w] = w, 0 - (13)

., w 0 J

According to vector algebra

axz+ax (oxT)-Mr = [Q] T

where
(@] = [w] + [w]lw]-{] (14)
After substitution of equations (1D-(1 into cquation  (R) there results
2, - £, ) . = a)dm - L@ -l dm =0 (13)

where a2, = ? + Ta: + ATTY += T[w]T -t - 2T wlgs +

TT™Y) = 2T(LUTH = TIQIT 7, + TOUR -G, (16)
[n order o form :he svsiem lincar cyuations i motion cguation  (16) s

anearized as [oilows:

11




a_ ,a )T
¢ “ %y C2 | (17)

2
a_ /w w4y -y "=3u+3y =2w'+(2a'+28'-3)x
tx c Py Py

+ (3-28") hx+(¢"+zw " =b4o+y) hy+( 38-9") h,

2 " '
2, fw_ = v (Y +4Y-¢"-4¢)1¢#(¢"+4¢-3Y)hx +hy~(’¢"‘*¢)hz

y
a. [wlma'2(1 ) =2u" -(a"+8"+38+3Q) x
:Z [o] po
+(3"+30+30) b +(20" 4" )b =28 "0 (18)

where ( ) = d( )/d= and T = @.t, 2 is the length of the tether

Shefl system

Now consider equation (8) for the shell system

I =T +q = (X+U, ¥, 2 ) (19)
T = (4,0, 0 ;% =(i, 0, 0) ' (20)

where X,, ¥., Z, are the coordinates of dm of the .<th in the frame, R,.
After substitution of equation (20) into equation (8) there results
(3 - f)i. + & ] dm - T L(3,) - ¢]. dm = 0 (21)
where a, =03y, - u, 6, 20,7 + T [QX. Vo 7 [ (22)

Equation (15) is integrated over the tethered subsatellite and equation (21)

is integrated over the shell. The two results arc added together and it is obtained

that
(a, - f)'. =(tm) {E -/ a.dm -/ 2, dm | (23)
s.t ol
where m. =m, ~m, +m,: E =7 ¢ dm
- $.2.2

and m,. M.. M, are the mass of ihe subsateilire . oo and shell, respectively, The

subscript <.t or p designates the integration over ine senssereifite and tether or the

12




e

shell, respectively.

To obtain the Rayleigh-Ritz solution, u, v. w can he cxpanded in series form

(8)

in terms of a set of admissible functions

¢

u = ;1 'bn(x)Au(t); v = g ‘ﬁu(x)Bn(t)

@ = Z o (0)C (0 L@ = MOBIGRICIE (24)
Introduce
= [ = [ . - [
Irb .t 3 dm i I‘b s.t Umdm ’ I’x s.c * dm
m m
H¢ s $ % dm; H = [/ x0 dm; H¢ Yy m / Y o dm
nq’rn s.t n'm d)m s.t m a’an a
v = 2 < L = f . L = f 25)
hxx s{c X“dm ) “ix,‘,ln 3. c wmdm H {‘bn'y:n 5 cl’)n”mdm (
Hence
[ oudm = ZI A 3 Juldm=IT A
3.t 2 n a s.C m A
/S uW'dm = ZI A" i [ vdm=L I, B8 , etc
3.t J)ux s.t a ¢m @ (26)

Mathematical expressions for the natural frequencics and mode shapes of the
transverse vibrations of a shallow spherical shell with a completely free cdge have

been obtained in Ref.[9].

u, = /aA n(tm?n (27)
where ¢? is the nth mode shape function
a K+
= a "'( !
$Pn A q'm‘jk C +J, (\ 5+ D n (\ ) Jcosk(3+8,) (28)

a is the base radius of the shell

Since f'5 da=0 . hence
2 Pjq
cu_dm s ' 4o o= S g odm o= 0 (29
5 ? 2 7p > 7>

[t is 2xpected that the natural “requencics and ~ntpe Cictions wiil e modified

Hvothe presence of the tether system. However. o= anper we sil adopt o
'

13




as the assumed shape functions, since the tether svstem mass is much less than
that of the shell.

Equations (23) , (18) , (22) , (26) . (29) arc substituted into equation (hl
and the resulting vector equation is projected along the X, Y, Z axes. After
integrating the projection along the X axis over thc subsatellite and the tether the

transiational equation for the tether motion can be obtained

- = k4 w_. " T * "y - ITTR ' ' "o *
nc fm* (2 ug +3up )4'&1,1, (a7=34 ) = 237 C'+(2a'+28 NI,

=4 st ) 0 m é:n e}
* ' " -3?. E -+~ mSt ‘-
= . * . * o

where Bse T Bg*W, 5 @ T a_.a /:zzz P 31 /3,

I, =al /m ;i IY =al /a 31)

Ya L z _3 _ P ,*: -
E.., E.. are components of E,., E. along the X axis

Ew= fedm; E, =/ cdm (32)

s.t p
and F., is the tether tension

The equations for the rotational motion of rhe tcthered subsatellite can be
obtained by the following operation
£ T x equation (1S) = 0 (33)
s.t
Bv projecting equation (33) along the Y and Z axes. respectively, the rotational

equations for the pitch( in-plane swing ) and roll ¢ our-of-piane swing ) motions are

obtained as

-2 3% CU-3I(H* -h 1T )C =21 (1'-u ) -273F o' o+ ut g

2 Txe T3 R0, X7 2 T 29 T2 =
#(3"430+30) (A7 -7 10 =172 e ™n 28 'h ] S, (34)
ek (3% 43 ) = 3:(% -a 1T 3 =ET () -
= 2«:‘:‘ K2 s ): = Reld
'35
(3;x-hx:: Y (3" ia=3v) ‘i::-gI:nAn\1’-I:’ Teyin, ow ;i=/u§ ()
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where q =H =-IT1 /m
X X0 XTh T
* * 2
g - - = - 36)
- 2, L, /m. H i~ /mg .(

a a “m -
L., L.. are components of the torque L,, produccd bv the external force

By the following operations,

(g (09120 37y S8 (2. (9 1,= 0 (38n)
. £ ¢, [Ea. (15)],=0  (3%n)

the nth longitudinal and vibrational mode equations are obtained as
Iy (4"-up #3u )+ L8, (A7-3a)- zrn C+(2a'+20 '=3)u”

Ya 0 o = bn m mob oW Wy
*
+T =20")h_ +($"+2y" " : - 5(®)
”n[(3 Yh +("2y -4¢*Y)hy+(6 3e)nZ]+ IX A = H_© (40n)
(3"+3 )+(V"+6*(-f9"-4¢)ﬂ -
n b d> n
" Y2YNL) 2 - () 41
1y (e +¢=37)h +h =V +)h 1+, 5“3 " iy (41n)
o na
TE® U2 (2'ew! )+2THY A’ -HY, (a"+8"+3a+36)
o d’nq):n = ¢n p0 ﬁq;n a xan
* an . 1 " 1y ] 2 5 (1) (4211)
13 RE +3a+38)h  +(20 '+~ )hy-ZB h, +H¢ 5 90 g,
where a aa
* *
H, , =Y, <L, . /me ; H, = d -I, I, /n
bnpm anm pnpn ~ ann Jnﬁn pn a - (43)
b ]
G =9, -I, I, /=
bnbm Dnﬁtn ¢n zm =

and the terms H,. . H., H.. results from the external force.

2 . ,
@ C, result from the elastic force™®'

&

The equations of shell motion

Bv the following operation

J r, «equation (6) = 0
?
e cquations of the rotational motion of the snett o e obraiped as (aorer ¢ in

cguation (M) iaciudes the :ether rorce acting on "n¢ ~acil swvhich can be obtained
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_7

by integrating equation (IS) and it represents the cffect of the motion of the

tethered subsatellite system on the shell).

W"-Q:‘#-(lm;)fb = (1/3 ){msthyhz /wz -nyEI a"+(I -, n o) (87+38)

- * " ey ! - - LI “" "
2} (2 upo h 8" 2§I¢ Al-Ll mc I+, EI (")

cr*. * 1 " 3 2 .

(Ix hxms:) (¢ +4¢)+§11¢m(3m+3m)4 +<Lpr + L px) /“’c } (44
n_a*a_ () ' * - * * -T* 2 .. * TP
3"-30,9-221) aepn/J’y (1/32) (38, (3 b ~T0) /u mz[mst@ -u! +3u

)
0o "o
* ", * ’ - n_ ’ - C"
+§Iwm(Am 3a)+21%(a '+ ") Z;T;Iy C'+h m (0"-40+2%") ] -0 [ZI -
* T ey ! * .0 " ENT
+-2mst(z upo)+2§IwmA 2L +hyrn (28 "+ ="y J+(L L, zoy* epy)/» (49

3 -Aﬂzﬁw-(L-Qz)yy' (=1/ Z)(hy‘*‘ns:ntc 31’.:{) ’/“,‘ n_&[(( ﬂ)-x-mst(.: Y )

-

+-21.‘I¢ (3;+Bm)]-hy[m (2" ;O+3u;0)+7 e +(1 -m B )e’ "I¢ c! )
11 L. ‘ 2
+m (388" +).'.I'b (Ag=3a) I+(Ly L ) fu ) (46)

* J P . Y’: = *“ * . * = *- -« ’*
where &‘Zx (Jz-Jy)/Jx, ,.y (Jx Jz)/Jy ; Qz (Jy .J’x)/..z

2,20, ok * 2.2 L%
st y+hz) ? Jy J'ﬁnst(hz+nx) Ixnx
2

N

= * 2 - e T\ = = = A 47
< szst(hx%y) Ixh:c s 1 :P KPQP dm H C.Pn pn/a ( )

Leoxs Lesys ez are the compornents of torque. produced by E,. and E,, which

appear in the tether force acting on the shell: ..

L.y Loz are components of

torque which are contributed by the external forces ~cting on the shell: and J.. J
J, are the principal moments of inertia of the nndetermed <shell

Bv the following operation

* 5 [ equation (6) 1, = 0 (48)
2 ’a
‘ne ath sheil elastic viorational mode cguation

Yy

Ca -
;xl -'»n. -3>£ )T \ ~)~| /\‘ a - r"'. -

- 3 Lz
2I, (22 =7

2% 2 C - ""“)«- "//:'f—‘a (4()“)
7 - - 2 8 a

-
-
.
z o 2
. -
1
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where E, is the modal component of the external force, &gn are ¢p_at the point,O,
M, is the nth modal mass, F,, is the component of the tether force acting on the
shell along the X, axis.anp ,,/“’c wiere wy_ s the natural frcquency of the ath mode,

Equations (30) . (34) , (35) . (40n) . (41n) , (42n) , (44) , (45) , and. (46),

(49n) compose the complete system equations of motion.

Now, for our special case (Fig.3).Q is along the shell yaw (i.e., X,) axis, hence,
h,=h,=0 and ~it is assumed that there are no external forces acting on the system.
By examination of the equations for this special case the following condusions can
be reached: (1) the shell roll, yaw motion. tether out-of-plane swing motion and
elastic vibrations are decoupled from the shell pitch motion. shell elastic vibration.
tether in-plane swing motion and in-plane elastic vibrations: (2) the shell pitch and
elastic motions are coupled directly to each other through their rates; (3) since
[,'"" =0 for all shell elastic modes except for thc axisvmmetric modes, only the
axisymmetric modes are coupled to the shell pitch motion: nonaxisvmmetric modes

are independent of the system motions. and would have to be controiled separately

within tne linear range.

2.3 Stability Analysis

It is well known that the sheil pitch and roll-vasw morions are unstable about
the present nominal orientation as J, >, J.> ], without rhe attached tether system.
In the present paper stability conditions tor the rerirered shell svetem will be

deveioped when onlv ceriter Jewiniity s considercd ¢t siell s considered rigidd.

a1 zenerai. 1 Iinite number of 2iastic modes in “he Toacer S oo e retained for
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practical purposes (truncated model). In the present papcr a few such truncated

modes are considered.

Rigid, constant length tether for in-plane motion

In this case all of the tether elastic modes arc necgiccted and the tether length
is fixed (without tension control). Hence, according to cquations  (34), (45) for

. . . . . . A\
our special case the equations of in-plane motion arc simplified as follows:

2 ”" " R " ‘ ' *
K @"+9"'+30+30 = 0 ; K& +e'-3nya 2 0 (50)
” * * * x
= } - > o % B - k 51
where X, axx/(n Ih); %, Ix1x/Jy (51
* = - * 2-‘- * "* 52
2 J, Jz-msthx-lxnx)/uy (52)

The system characteristic equation is given by

. A * 2_aa™ o
(K1~K2)X +3(1—KLﬂy-t(2)/\ 99‘] Q (53)
. . » 2 * %
R, =%, = [: 4/3me 1/ (4 -
since 1%, _ixnyﬁxn:mp(msﬂt/w mel/ (4 thx)JY (54)

if h. <0 then K, -K, > 0
The neutral stability conditions are
Q; <0 (55): L-Kln;~xz > 0 (56)
and 9(1-&(19;-K2)2 - a(:<l-:<.z).°ﬂ; >0 (57)
[t can be proved that if condition (55) is <aristied. then  (56)(57)  are also

satistied.

Meanwhile. if h, > 0 the neutral stabilitv condinons nre

. %k .

K, - K., >0 and S, <0 (58)

hur (S8) Qs aimost anoossibie o osauists F o, > 00 cko sceording o (32) apd 3H

s o hetier 10 caonse A, 7. S0 thiar TR ewrrnr sirsuie coaditions Jorin-niane
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motion are
h. < 0 or h=-h, > 0

Jedo+m, P+ Lh =0 +(m, +moh* +(m, +m. 2)h ] m,)m > 0 (59)

Rigid, constant length tether for out-of-plane motion

According to equations (33) , (46) and (44) the equations for the rigid,

constant length tether for out-of-plane motion are simplified as follows;

K Y =0 +(34K, ) y=4¢ = O

. a1t _*_ *'a
RyY"=b" K y=42 $=(1R )¥" = O

11 *, - * ! =

) ‘Qxb (l*Qx)Q Q (60)

v w7 * o a7 - * L 2_.% *

where 4 -Ixhx/J‘z 2, Jy‘ J:<+(mschx L) /Jz
f‘* = *., * * - - = 61
e T DL = (3, I3 = (61)

The system characteristic equation is given by
6 b .2

aghT+a,\ e AT 0 (62)

where 3y = KI'KB

3y 7 =R (R =R +34K R QT SRy (1001 (14 )
3, % R (HRHATR -3R) AT (39K, ~4Ka (3K, (1-22) (140
a = -anE(3+Kl)Q:-K3] (63)
the neutral stability condition for this svstem is
22 <o (64)

i.e., A2 is a negative real number.

Since  a, > 0. condition (64 is cquated o e wilowing copditions

2,20 (65) 3,3,°243.>0  (66) ;5 a.>0 (67

-
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and s = a2al+i8aa,a, 3 -0aga;-2Talat4a 23>0 68)

0%2%4%
The conditions  (65)-(67) are the Routh-Hurwitz conditions resulting from the
cubic equation in the variable A2 [equation (62) ] and condition (6R) is from the
condition that this cubic equation has three real roots.
[t is known®' that one of the necessary and sufficient stability conditions for
out-of-plane motion of the shell sysfem without the attached tether system is
CHE N VAR | (69)
Now we assume condition (69) is still satisfied. so from condition (67) it is

obtained that

* . ) .
2,2 .<3/(3ﬂ-«.<l) (70)

If the condition (70) is satisfied, it can be proven that the conditions (65) and
(66) are also satisfied and it is demonstrated numerically that condition (68) is
also satisfied for a variety of system paramcters.

Hence. the neutrai stability conditions for out-ot-piane motion are

Q< 0 (71 ; ::>K3/<xl+3) : (72)

The neutral stability conditions for a rigid. constant length tetlicr are conditions
(71) . and (72} together with condition (59!

Tvpical stability regions for in-planc and out-of-pianc motion in the parameter
space m,, h are shown in Fig.5: it is scen thar rhe <iabilitv region for in-plane
motion is larger than that for the out-of-planc motion.

[t can be proven that the out-of-plane motion svill »e aximptotically stable when
damping of ac sheil roil angic s apavided togerper v e conditions (7D and

(72

20




Rigid variable length tether with Rupp’s tension control law for in-plane motion
According to equations (30 . (}) . (45)  the equations of motion with tension
control are simplified as
€"+2Ka '+(K+8 )28 '~3Ke= F ﬂu n o2 IR )= asL

Kl“ "3 "+30+368 -Kéa "= Q

" ] * v 1 »
Kya +6'~3ﬂy8-&55 o (73) -
where 3, ° h/L; ¢ = (Z/zc)-L ; K= (ms-an/Z)/(msﬂn;)
- * ] % : K = * % 74
K, ;Ixz/<axx+h1x) 5 ZmSthz/Jy (74)

For Rupp’s tension control law''®
£m (X e¥_ie") (75)
the system characteristic equation is developed and the Routh-Hurwitz criteria
applied. After some complicated algebraic manipulations the following expressions
for the principal minors are ot;tained

Dl = (X -<2)K '

13 - 3 - -- * - 3 -' . ' -' L] - _. 3
D, =(X;=K,)K_ ,[(.<1 RoIK_FIK(RR, =K, Ko 3K, =K o) #28 (X K, =K, X )]

2
Dy=(X, =K )K L= 39 (XK, =K, X ) (2%, ~KX,)8, +6&(< R, =K, X=X, K )A/K 1
v e 2 R k2 _ Kk , . ’e v o o : *
Dy =9(Xy=Ko)KL (AT S4B KT +<8&<1-x1)/§§>[<x£~ Xs%y)0,
L T T - 21
(Xg/X,) (Rg&y =K, Ky+K, ~Kg) 14]

R s o e o Nt o s er ar o N S 12 1
% = -6aag;xg.x(1-xl)L(g;gz-ﬂsxl>ay -5 (XgR, =R, K=K, -%0) /X, 1273

*., %
35 = -9Qv<-D-
(76)
crrt . .. v
vnhere .= X_-3K
- - . -4
- .. - 2.2 .. < < K
AT =aE 3 272 mm /4y TRt Umala mm ) (F~nIls
Rets ? - 3 - - 3 - L~ < e
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B* = 8&2231:pm=(ms+mt/4)JyI;/ [3mz(H;x+hI;)2J;2 ]
c* = AI;ZK(Jym’;ch)Ji/[(i-l;‘i-hI;)Jf] 17
The necessary and sufficient stability conditions arc
D, >0 (i=1, - - 6 ) (78)
Since h > 0 ( or h, < 0 ) according to equations (54) and (51
Ki- K, >0, K, <1
Hence, from D, > 0, Dy > 0, and D, > 0. there results.
X 0, KT > 0 and rz’; <0 (79)

Meanwhile, since

o o L. . x, . ” kg
‘5‘1"4‘2”‘4“5 N 21:{"“:{/[(5:::{'%1::)3'!] > 9

KL, -K, R, = h}_3 R L Ry R B

5% &<2 2 np mt(msmc/A)/ (3¢x +nIx)JymZ] >0 (}0)
- - 2 Farsug’ b ;

2K, KR, = 22 m:(msﬂxt/é)/._j(d:‘+h1x)ms:] > 9

x2

and 3%*¢ - 4a%C*< 0

thus. if LTS Q, X

[ 4

> 0, %< 0,
y
then D,>0 (i= 1, - 6)
So the necessarv and sufficient conditions for in-plane motion stability with
Rupp’s tension control law are:

:z';<o;:-:,>0and:<f:'>o (81)

(4]

Stability conditions for flexible tether

When tether flexibilitv is considered it i< difficult 1o ger analvtical resuits for the
staolity conditions because of :ac nigh order of rhe <werem, However, it is found

aumericaily that the svsiem swahiiity conditions are wnchanged »oth for in-plane
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motion ( with constant length tether or with Rupp’s tension control law ) and out-
of-plane motion ( with constant length tether ) when the tether flexible modes are
included in the system modei, for a variety of system parameters ( for example, for

variations of h, m,, and 1 ).

2.4 Optimal Tension Control Law for In-Plane Motion during Stationkeeping
) [n the last section it has been demonstrated that the system is asymptotically
stable with Rupp’s tension controil law for in-plane motion. However, in order to
improve the transient responses two alternate optimal control laws are introduced.
One is an optimal control law based on tether length. in-plane swing angle and
sheil pitch angle and their rates for the rigid massive tether model; another is an
optimal control law, which includes additional feedback of the tether vibrational
modes and their rates. For the system with the state variable t‘ormz.lt equations the
optimal control. U, which minimizes the performancc index
»
] = é’ ( X'QX + U'RU ) dt
s given by U = - ( R"B'P ) = KX
where X is the state variable
Q is a positive semi-definite state penalty matrix
R is a positive definite control penalty matrix  and
P is the positive definite solution to the steadv state Riccati matrix equation
-PA - AP - PBR"'B'P -0 =1
The ontimal controi faw, dascd on the sotier enz'a. a-niane swing angle. and

siaeil oitca angle and their rates Jor e figid orher moedct ©owvith state variables




X'= [ a,8,e,a',3",e" ) takes the form:
Af = —(Kaaﬂaaﬂasﬁa_,a'ﬂa,9‘1'-&(_:,5')

For the system parameters: m,= [0000kg, m,= 300kg. =1lkm, m.= 38.35kg,
h =0.08km some typical system simulation ( three vibrational modes are inciuded)
resuits show that the transient responses for the rigid tether optimal control law is
better than that for Rupp’s tension control law for some of the control gains,
especially for the damping of the tether and sheil pitch angles. But it is also found
that the system could be unstable for some of control gains ( Table ).

[t is obvious thaﬁ the transient responses, when the optimal control law includes
feedback of the vibrational modes. are bettcr than rhc responses based on the
previous control law. The improvement is cspeciallv nored in the damping of the
tether vibrational modes. A typical comparison of transient responses for the three

different tension control laws is shown in Figs. 6a. 6b. and 6c.

2.5 Conclusions

The orbiting shallow spherical shell pitch and roll-vaw motion are unstakie when
the symmetry axis nominally follows the local vertical. However, it is suggested that
gravitational s:abilization could be achieved bv incliding a tethered subs.atellite
svstem +0 provide the favorable moment of incrria «disirtbunion. The tether could be
connected at the end of a rigid hoom which is attached to the shell’'s apex. The
2quatons of morion [or suci 2 tethersd shailow spitercni shell inoorbit with the
ar2sent fominal orenanon Qare een Jdovinpcn ot v Anner

-

(2 snell roil-vaw motion, 2ther oul-or-pigne swrg moron, and thie ether out-




of-plane elastic vibrations are decoupled from the shell pitch, shell elastic vibration,
tether in-plane swing motion and tether in-plane elastic vibrations. For given sheil
and tethered subsatellite system parameters a suitable rigid boom length could be
chosen in order to provide a gravitational stabie structure both for in-plane and
out-of-plane motion. The in-plane motion of the system could be asymptotically
stable with Rupp’s temsion control law. [t is demonstrated numerically that the
flexibility of the tether would not affect the stabhility conditions for ’the constant
length tether or for the variable length tether with Rupp’s tension control law for
a variety of system parameters. The transient rcsponses can be improved
significantly, especially for the damping of the tcther and shell pitch motion, by an
optimal control law for the variable length tether model. It is also seen that the
system could be unstable when the effect of tether flexibility is included if the
control gains are not chosen carefullyv. The tra.nsicnt responses can be further
improved by including the state fesdback of the tether vibrational modes into the
optimal control law, especially for the damping of the tether vibrations.
Extensions to the preseut paper could consider the effect of the shell flexibility
on the system stability and control and somc kind of active control could be
introduced (in addition to tether tension control) to improve svstem performance.
Additional control will be required to orovide tor out-of-plane damping of rigid

motions and vibration suppression.
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Table 1. Stability Characteristics for Different Control Gains

R X, Rg X, Ky Kg o <, Stability

{ 6.938 5.875 6.114 2722 3912 4917 unstable

2 5.456  4.841 6.034 1.637 2455  4.377 stable

5 4.296 4059 5984 0.583 [.058  3.811 stable

10 3.812 3742 5967 0.012 0.304  3.473 stable

20 3.536 3.565 5959 -0.405 -0.249 3217 stable

30 3.437  3.503 5956 -0.591 -0.499  3.095 unstable
where Q = 1 3y

Table 2. Control Gains
Ry Ky K”l <q2 <. | Ky Xg, Kn.l K”'z Ko o
Fig. na. 0 0 0 0 6 0 0 0 0 346
Fig. nh. 5.46 4.8 0 0 60X 164 246 0 0 4.38
Fig. ~c. 9.19 7.50 359.2 19 627 4.2 TR5 -0.22 -0.09 35.63
26
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27




Fig. 4. Coordinate Systems
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3. REVIEW OF THE CONTROL OF TETHERED SATELLITE SYSTEMS

This chapter reviews the steps in the development of
contr2ol laws for Shuttle/sPlatform-Tethered Subsatellite
systems. The tethered subsatellite systems have Dbeen
proposed for numerous applications. This aas led to many
icns dealing with the dvnamics and contrcl of such
systems during their deployment, station keeping, and
cetrieval. A brief compariscn of control laws us2d by

varicus investigators is described here in order £o 2valuate

11

ten

4]

differznt :zontrel methods for tethared subsatellite sy

8

—

finally, r2commendations are inade as to the suizability

di

Fh

2f th ferent ccntrel laws for adaptation with the

(

proposed orbiting tethersd resiflector syshems.

3.1 Deployment

“hr Shuttle /Platfcrm 2 a digtance as much as 190xkm Zrom the

Shut:i=/Platzform. Since most of the usesful aission

Jeployment can e carried cut 21ither usiug 3 passive
croTcslure 3z suugeszst=2@ Ty ¥Yane and Levinscon and descoribed in
25, 1) or with <he nels »f activs coptrol similar to that
SLIZT -2y S [10]. TaT fiisLve procEQuls L tnitiated by
Sl3cing TR TEtler T2zt oLts i ozZoaal ibsids thi2
Tt ole anloal_iwiiy LT oL fTloan Irozel; ent . to2 gpavlcad
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mass, Mg, attached to on2 end of the tether 1s ejected from
the 3huttles and performs a free flight unt:l the tether
be:zomes taut at whioch time the paylcad is sudbjectad to
impulse affecting the motion. Impacts and free £l:ght occur
alzernately until srnougin en=rgy .as been dissipated during

impacts so that no further ones occur. Tiie tethesr then
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ctive control svstem t2 guarantes adequate dynamic

serformance. Rupp (10] Zirst made 3 presliiminary frzatment of
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T = KaL - 270 - K-Lg (82)

shz2re L 2ad L are iastantaneocous l=ngth and lsagth rate,
szspectisely. L. o1s oz commaaded length whils ¥p. H-ooand O
30z a3 et f -oinstanTs L. i: zhanga:d m »tzps until the
f.nal ==2t.zr langth i attained. Implensntaticn £ the
sacersl law reguiras tiie msasursmant oI t27her t2lsicn, rate
sZ sk tesmser Zeclooment Asd Luetantansous Tetiier lsacgth

Tl Lattsr o tris T3 se me Cured Dy o2 osullesy lepto oL Erlc-
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+1onal contact with the tether. The tension can be measured

Py a spring damper arrangement on the same pulley. The

Mo 3
Byt

uremsants are fed into a computer which calculates the

m

required torgque that must be produced by the motor driving
the tether reel svstem.

In the dynamic simulation using Eg. {11} Rupp [}0] usad
Ko = Kj-2mg0* while two values of Xp{3mgw< and 7mgw2) were
chosen. [w is the assumed (circular) orbital fraquency of
the Shuttle orbit.] The coefficient, C1, was used to
critically damp the longitudinal stretching ¢scillations.
Tiie control law was quite effective in damping in-plane

nuzion during deplcoyment, but, for out-cf-plane motion was

Eiker et al. [12] treated the three dimens:onal djynamics
tial effect of the tether
mass, aerodvnamic heating. and azrodynamic Zcoroes on the
te+her and subsatellite. The fcrm cof thas control law used
was the same 335 in Rupp {10] with the esxceptitn 2% modifi-

at:

thas commanded length for desired cegzlovment and

t
V]
3
(9]
rf

r<.rieval maneuver:z. Thiz modified tensicn ilaw was i the

~ sl - - - .
—--—r%-—--—- = F==Zig-L +~ Zf-FawlL-2-wl.- {83 ;
m+ = m
s 2t
giisre m. oand me 303 tihe mass sf osubsatsliit:s and tether,
rrzipectiraly, R Ois shie rati: bestwesn The countrsl law stretch
Sreguency snd ocrkital freguenc, wiill: £. L5 Tas contool law




damping ratio.

Le KiL + K»

was suggestad.

The -ombinations of exponential and unif

-hange of length can be expressed in the form

Li exp (ct)

Li (l+ct)

L
0

L1 - Lao-Lq exp (=2t)

where ¢ 1s a positive constant, L; and Lf

£inal lengths, respectively, while L and L-
intszrmediate lengtis.

Ceployment is basically a stable cperati

21, ji12 however, tzwards the =2nd of deplcym

’

azrodynamic effects rtecome important bcundsd zteady inplane
rotational and =2lastic osc:llation may result. In addition,
art-cfepiane ro=aticns and vibraticens fcozur for eccentric
orsits rtaciirn=d t2 the eguatorial pliaae. This x»xotion dees
not o zauvse iny zer:sus problems and can be eliminatsd once
the deploymznt is complated.

Yalaghan =t al. 1131 ised 2 £ini=2 el=zment zpproxinaticn
=3 a izt retizzd mathematical model ¢f the Shuttle-Tetherad-
InsszTalliite &vstem Jhiich ianc_udses c2vhier mass 28fzt3;

warer oo fomo o f tlle feitlzr ocortrTio 3w was Aomiiar te
c.xc 1n Sups (10 angd ETaper 2% al. .12

Tzzizally similar results wera ontainzd wih=sn d=plcyment
. iorLETorut ociling oa Lencth vate law IMLLvzooand .1':’5.-]”‘4}
DIomihie Jornm
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A commanded length of the form

(84)

orm rates of

L,H< Ll
Lo< Lo 85)

1aitial and
are two
>n {Baker et

ent, when
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Lot o

[

v
P

[ES

where K and X are gains and state vectors, respectively.
Subsequently, Bainum and Kumar [15 first developed an

~ptimal contreol l1aw based on an application of the linear

regulater problsm, with control provided only by modulating

the tensiocon level as a function 2f the difference between

the acztual and commanded length (€ = L-/L -1}, actual length

hS

rate (£'), inplane tether line swing angle, &, and its rate
a i.e
T =Xe + K e' +Ka=+Ka' + Te : Te = 2L.me  (87)
- ..Eb ~€ o A : .(},' Lol o = SWaolllg i
Th2 system was ideaiized as two point masses connected by a
missless, inexitensible tetliizr with the system ameviang in a
nearly-~circular orbit. The dynamic 2ffects of crbital

czentricity and the earth's coblateness were neglacted.

In the dynamiz sixulation using Zg. (87} Bainum and

[

Fumzsr ised 3 ceommandad lsangth, L., 2yponentially increasing

10

with time ag 1 Kalaghan =t al. [13]. with suitable medifi-
zatiza f£or the desloym:snt , 1.2,

e = 10 + 34320 (1-27E/2) (88)
wiers 2 13 3 2°sitive constant. With this commandsd length

e - - - - - ~~ - - - - - = a e
went ra2auires i moderate duration oL otime and azs Seofer
- - . o= a9 ~ - 1 - ~ = g~ - = b - 1~
Jampiny charactariztics. wails ceasariing tials res:iit with
IS 2+ = oan > - -~ =1 - ar ;r].z P - Y Tal o307l t L o= ]
..... i figzel [zZallsr et oz ] 338 ZAC TKzliagazan et oal
N - -~ o= - ~ - - - 1 .~ -~ g ~
13: Vizzal'z2 dep_oyymant simulation without aszrsdynam:ics
N - = - PR . T - ~ 1o - -~
and o TelI-DLane Motiocn regulrsd APEroIiaaTell ol 2 ok
-~ T e - P S -1 - - L P ™ I -
z0lcy Tas sungartszilice oo 2lem, wasreas tihie 3AC deployment
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using Rupp's law with

[10]

raquired approximately 10

3.2 Stationkeeping

This *ask involves
in
propesed ae

configuraticn involves

hr.,

the maintenance of th=
n the desired =2guilibrium configuration.
roéynam.c test missi.n,

a suksateilite

atmospheric effects included

to deploy the subsatellite to 100

subsatallite

For the present

the desired equilibrium
deployved 1130 km below

{or abov2) the Shuttlie Orbiter (Shuttle Ortiter altitude ~
220 Km; alcng the local wvartical. Under the influence cf
2utarnal di-sturbanczs, the suksatellite deviates from this
desired posizion.

Zainum and Kumar {15 u1cged c»ntimal contrecl law thecry tco

“ha

s
N
0

W
[ ]

1y

external disturbing forces ab

n

th2 Shuttle Tethered Sub-

raspense to various initial
the

that

1082 assccizted with Rupp's

89 )




U = - (R™IBTp)x = - kx { 90)
The system respeonse with lower overshoots, shorter settling

~imes, and with comparable pcocwer and tension levels was

4

sbtained by aprlying modarn control thecry. Maximum tensile
aczeleraticon for tais case was (.525 m/sec- for the cptimal

control and 0.50% m/sec? for Rupp’'s {10] n-plane tuning

When the =2fiact ¢f atmosphere on the =ether was

3

considered with RPupp's {10] contrsl, the system respense had
less damping than with the coptimal controsl. This raflected

-

iffress in thz cptimally control

p-a
1¢)
Q

systam.
Also, Pupp's centsol had a t£a2ndency o pull the subsatellite
to a higher altitude, unlike the optimal ccntrcl which had a
tend=ncy t¢ deplcy the subsatellits further wnte the atmo-
zphere. It is 2vident that the contrsl law barsed i the
-inear ragulaZor thzory resultad in 2 supericr perfarmance

-

whzn Zcmparaed 2o RUPE’'5 caittrol law n the staticn Keepin
& i

Then tihe prericus wevryX was latar =2:tandesd 2o Platform -
Tzthers=d - Suksaz=llits systewms kv Bainum, wWocodard, and

[0
(T
-
.
m
\
(0]
1]
s
jov]

Jrans [4], where 3 Z-dimensicn machems ical o

2.7 2l732F lonp 1n-or3it plane dynamice »f a3 space Tlatform-
Tethsgred-~-Subsatellite svstan was htraatad Tas ceantrel was
Srzumed Sz otz omosvodzd Ty ototh weodulatoon o tas tetner
measiin Levsloand comentin tyuoe olatorn-emiined devices

Tl T ITUISL 13WN: DY ICLTUCLLLAT SETasr o Linmao 1.3 ciacform




pitch angle, respectively, weare,

Ty, = K e +K__,e'+K a +K ,a'+K
e €€ eav eat v €

6 +K_,0 (91
€ v € v

8 8

T = e+ ] ! 92
5 = Kge® + Kgoae' + Ky oa g0%yv T Kgg 19y (#2)

where € /L = 1,g', = ! = /= 1
L/L~ 1l,¢ o, a-aeq, o GV 9 eeq, ev

and K's are stata variables and gains, respectively. The

a + K, ,a' +K
av v

"

angla, 8 , descrirzes the orientation of the platform with
raspect to the lcrcal vertical and the angle, o, represents
the angular disrlac=msents of the tether line relative tc a
~ocal normal in ths platform, Lo 1s the ncminal r2ference
lanzsth, znd ths subscript "eg” rsferes to 2quilibrium

The numerica: rasulzs showed that tather line swing
mcTion was damped, rsquiring akcut 1.75 hr to reaci: the
nominal value, whereas th= platform pitch motion was danmped

2ut within approximztely

zagts rate mzasuvrements only; (2 the tather attachment
=oint oZZzst 1ncrazsss ths system’s gaatura. coupling and
Iamgraves transient pericormancs: il the Lezist dznped mods. b
3t th2 cosft of siightly lzirger coutrol for:>s ampilitudes.
Tontinving. Pzl Ruving and Zainum (5] daveloped 3 3-
domensional mathemanical ucdszl oL thiz pan oand Dlos2d loop
SoanlIi 22 o Tzzcs Tetll2ret-Pliticra-Sulaztelllites szvitEm




ind used the same fcrm of the contrel law as in Ref. ({15]7.
It was assumed that the control could be realized
through appropriate modulation of the tension in the tether

-~
n

and the mcmentum type controller for the platform

14

-
-

b2

pitch, roll and yaw rotation., i.e.

= = ' 923
L K€€€ * Keeev * Keaav + Kee‘s + Keepé * Kea"aé ( '

T = ' ' 53
g T Kgo® + KB + Koo+ Ko €' + K0! +K o al (93)

{i1n-plane)

T =K + K + K + K '+ K, W'+ K ' (94 )
o " Koo T Koyt T Kgy ¥ Kpgr@t + Kyt F Ky Y |

Tw = K$¢¢ + waw + vaY + Kw¢'¢' + wa,w' + KWY'Y' {95 )

{out-sf-plansz) .
where th= anglss 9, ¢. ¢, and ei d!, @' are platform pitch,
roll and yaw angl2s and their rates, respectively, <«a' . v v’
:r2 <ether line n-plane and cut-of-plane swing angles and
angular rates, respectively.

The.n:mer;:al results showed that the pilatform pitch
angl: and tether line swing angls dampe=d, both requiring
Zroat 1.8 hir Zor the inizial conditicns selected. For cut-
sf-plane metion the platform roll and yaw angies, and the

cevher line 3IwWing angle damped requiring akbout 2.5 hr, 3 ar

Toitrcllaniey owrnen tenstonl modulation orn the tether and
pentoam SwSe Sontrcloass avallabls 3onil Aubsystam: are
sy sz L2 oshe: lapgitn of ~hez osfether, and the poatform
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rotation angles togetier wizth their rates are availlable.

Th= tether attachment point offset, which is the source
-t the system's natural ~oupling, is an important factor in
lishing system contreoilability and observability. For
th2 case of nc attachment offset, the rctation of the
plztform will not affect the subsatellite cut-of-plane

swing; in other words, the e=ffect of higher order terms

L

si.oul:

be considered, or other means of contrcl, such as by

3

placing an actuator on the subsatellite to control the

tather

-

[

ine cuth-cf-plane swiig, siiculd be augmented.

The -nvestigaticn cf the =2ffesct cf tether flexibility

ocn The in-plans) stability regicne as a functicn of the

~ether tensiosn ccntrol paramezers during tis st

fu

ticn keeping
was further developed by Liu Liangdong and Bainum [8 ] whare
in alrcernate optimal control stracegy wiich included
3dd1tional fzedback 2f the Zirst vibrational mode and its
rata was introduced. The formuliation ¢f Lansion level

= - + ' + K o + ' ) (0K
T (KEE KE,a Kqu Ku,a + Kn ny * Kn,nl) {96 )

1 1

whers N1y iz the first fiexizle modal amplitude (non-

lyv. The

dimensiciial; star: variaple and Lts rats. raspectiv

14

syesem 13 contraol.oakls usziig cnly tetd

2g ke nwmnesscal conparzson of —he ToaasoEnt
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responses 1t was se=n that Rupp's control law ccuild be used
to control the fthe in-plane swing angle successIn!' during
stat.cn X=2ping but It was not very effective for damping
the 1n-plane vioraticns. The transient responses £or Bainum
and Kumar's (157 >ptimal law based on €,e' o, o were

faster than those for Rupp’s 10] <ontrcl i1aw. The further

1

improvements n transient respense in bo:thi the Zn-plane

1y

swing angl=s and the first vibration modal amplitude wera
g g P

macde by inciuding the stats feedback of the first

m

visraticnal mcde into the optimal control law. AaAn Lmpove-
menit W33 3a1l:o apparsnt in the damping c¢f ths sz2cond mode due

=2 th<e coupling betwesn zZie first and sscoiid modss.

3.3 Retrieval
The retr:ieval is basically an unstables procedur=.

Fahrisral -an be cCari

D

d zut by letting the commanced

iength, L-. rednc2 Wwi~h tioae Lo can e desreassd 1n steps
[Rupp i~ 2r it <an be an 2xponentially decreasing continuous

fvactizsn £ time, such as

L~ = L,27E/P .97)
Zn eiczher case, the rotaticnal as wsll as vibrational
zls n the abssesnce ¢f zctive control,

- - ~ = i - - - % v = - o PR ~ A~ e e [ I - -~ 1 1 1
=23ns: Tine nedative Jaopging iantiodussd dnring retrisval s

- - - oy - - ¢ - - - -
b 10 =zii¢ Ez'ier’: 27 =22 (12] t=zther t2asiin
- - b .- o S a g m e g s " 1 - - - - -
17T L3 el 1a2d ST oAl ORN} LAalyg= AMpLLTuUlE
o e e - - e~ - <1 = om e - -
- I-zlans-iwing Ec.llaticsus wnich asproacaed AT oand
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452, respectively, resulted, depanding on the initial

num =2t Fumar's [15] sptimal ocntrol strategy
I2r vretrieval, the in-plane re<r:inss 1s better than that

., howevear, cur=-:I-2 12 mction
To restrict out-cf-plane o2scillations £ rzasonable
bounds, non.inear controel strategies must be used. Xu et

3l. [ 16] shcwed tihat a satisfactory .ength rata law is of

= =K[l1+K ,o"+K ,v'?2] .98 )
o v

wierse K, and K_, 2are negative ccornsztants Ke 15 a aegative

functicn >f the trie anomaly 8. a 1s the 1n-plane teiher

sw.itg azagle, aind ¥ th2 cut-of-prane tether swing angle.

Moedi 2t al. [ 17] considsred scme nanlinear contrel

37r4ategies witis a tensich contro. .aw of thie form,
199 )
T=KL+K,L' +K ,¢'¢+T \
}(,L KLI .Y!( o
Ty ous il this fznsicn tontrol law i1t wasg zvidsnt that

e ampli~ude 27 the out-ci-plane swing angls conld ze

q

LIr.ftooantly Uedacsd during U=strieval.

Tostartioh oard Zesdissen [180 usa2d 3 nonlineas control
law o h3o=d o pETiITiL JInTrolochEorvy to find Uvstrieval
1lsnriies Tazt o veduc- e Lo-zilans an’t 1mesIeslanes lilra-
T G %L oMITLIN TIo- Titherslorateloltbt: - 2lIifser=nt o 3ZZroaan
Va3 ~d Tolat o sZeTiiirs 3 5. T oseT oI LilTial : Sicas
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annd desirsd final ccndition together with a cost function
that penalizes in-plane and ocut-of-plane deviations of the
mction and uses the commanded tether length as the means of
centrel.

It 15 sought t< minimize a cost function 1i.=2.
e
J=slx(t),t ]+ s { LIx(t),u(t),t]}dt
£t t
o} 100 )

5ixite), TE! =L Wilxg-xg)ic ( 101)
ixlty, ult), £t} =L gi%i<(%) + E us(t) (102)

wrere Wi, 25 and R are weighting factors that .ndicate the
importance of niinimizing the associated state cocmponent, Xy

desired final state such as the

[»
L 1]
o1
(@]
25
t
L
(@)
"J
jov}
fu
i
v

’J
)
o1}

£inal desired tetiier iength. With the Laplem=ntaticn of a

~asg cptained. The numerical simulatien sssult: showed that
Sy sustable ohoize of state and control weightings the

2, and in-

Siszne Isriilationg were mere readily attenuated than those
SIr k2 out-of-przne motlen

Tz omors resxlistic mecdel was not counsicsred in thzs
LoUAg LAt 3ucn as Laciuding Tas cransvers2 wmchien of the
T-Tlhel ~..2 =Ifzz T O3EmTSSASTLS IoUrtes 2.0 =ccentricity
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cf the orbit.

In order tc furthar improve the performance of the
fystem an acdditional nenlinear tension control law was
1atroduced bv Liu Liangdcng and Bainum | 8] which is <f the

form:

+ FKgY= + TKg5Y 21] { 103)
where: mg,Mg are the mass of subsatellite and tether,
raspectivaly; W is the crbital freguency; AL and AL' are
ifersncs betwesn the tethsr length and some reference
~angth {anrd its rate}; the angles o, y,a,y' ar2 tsther in-

Le and cun-cf-nlane swing ansles and angular rates,
cespeccively; and FIj are <ptimal centro. law gains.

Pecius2 1T was difficult to use s3trictly analytical

{

=

of

vt
'
1

Zor such ncnlinsar

o
O)
[aR
'
(wl
)
~L
i
[

-ve contrel gamn

u

4

2@riaticis, the coszt funition was lectzd as celow:

)
[
D

o= L iRteydiati/Ts ( 104)

[QN
t
v d

105

1

R 106‘,

'
[}
i

wo2r: Tz, 3., Ip snd Qo ozre toas dasired retriaval Time, tae

Sirst £l2mibl: mcdal (ampootude) state variaclas. and a

MZUILTLNT IU-IfLToenT. YESpeItLVELY ~occording te The
TAILAT LI TeslIE LT NaS =211 Toaht o Tos oams-oLltude 2T the
10T oanros Uy lrEDZeILELLYY wWele JedlId gUreAlly as
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compared with Rupp's [10] contreol law, and the transient
responses were alsc petter than those based on the control
law in Ref., [17].

The tension control is unreliable during the terminal

[ )

stage of restrieval when the tension becomes very small
because of the small lenpgth ¢f the tether. The ftension
night even become zerc (slack tether) due to the longitu-
dinal osscillations. To overcome this difficulilty Eanerjee
ancé Kane [16 ] prceposed that natural tether tension could be
augmented with satellits-based, tether-aliigned thrusters and
toat these thrustars would be capable of stabiizing and

speading up tae restriaval process.  The thruster augmented

folak Xo = v‘. ' + : + K !
To-Tc Ka + Ko XY Y (107)
whers T-. 15 th2 tcrque proportional to o'and y'

A summary <f tie controcl laws us=d by the rarious

ct

v
o)
o3
'.—J
¢
w

nvastigatict 1

-

Lo
L]

givsan in
3.4 Recommendation Remarks

Y Zezause most of the useful missions are czai1risec ocut

T:thered I bsatelliite systems, the investigation of contrel

Laws shou.d b Zucus23d mainly on t.oe depl.yment and stztion

i - A P Lol T - - T~ - - - e P R P - = -~
sz.ng staves Petrizval 135 1ss53 Lmportant than the first
Z -~ - 1 - SR B, <« o - o < g - - -
~w > Lo tatlier reflect o appliciatnions wh=ve 1t mzy ncT bs
P -~ - P .- = - b on o~ - - = - - "~ =7 .. = - -
saocirred st oretriev: Tas Ltetoey =172t posailRly befoire
eyt ose ~ - PR C ks e e PR A I R I TR S ~ . =AY o =
J3agiiloman2wvoerinil). S GG 322 ML inveal JIGaTIlTL L3N8
- - - - - 1 - - - . -~ K P P [
JroZrn B 2 TLALLY Tlilege Wl TO LTLioe TATIs Tl
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augmentation of the tether tension controli, it may still be
difficult to implement an efficient and successful retrieval
for the tethered reflector system.

(Z: ©Tor deployment, the active tension modulation schemes
proposed by Ruppuo] and subsequsnt investigators are more
2fficient than *:he purely passive scheme advocated by Kane
and Levinson.

(2} o©Qut of the various active ccntrol laws for proposed
arbiting tethered reflector systems, Rupp's {10l control law
15 the most basic and is 2ffective 1in controlling in-plane
maction, but not adequate for out-of-plane motion control.

(£ Kissel's ‘Bakzr et al.]l2] tension control law, based

on a combination cf exronential and uniform rate of tether

-

ergth, as a ccmmanded length rate can be used both for in-

plane and cout-of-plane moticn control during depleyment. It

l¢]

w

v

S &e

1Y

n that the duraticn of time for in-pliane depicyment
p -

was reduced as compared witil that in Rupp [10], and damping

rizt.c f station kzeping and

- 3 3 -
toth the case

O

7]
tey
Q
'J
W
m

ciaract

(Y
L

ieployment wer= bettz2r than tiicse £<r Rupp.
¢%)  EBalnum and Xumar's {15] ceontrol law kased upon the

linear regu’ator problem of optimal :ccntrcol th=ory is

znztanle £or adzrtatioan with zropesel Zhuitls -Tetherad
3ystams, .aore spe2cifically

oY £I3atiin l2epillg purposes at asti*udes whizrs
it ipherst 2£8£2:285 ar: ne2csligibls, ceoatrsl Laws ra2sult in

- - - . -~ a e am o - . - PO -1 R . - ~
_oproved trango:nt veszpronsse tc onizrzl perzurkbations as
- - . -l ~ = - L. ~ A 3 - - aa 1 . roe- PR - . P
soapared with przviiussys develrzaed v laws [Pun:z an:
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K:ssel's!. The tether tension and power levels required for
such contreol do nct exceed previous requirements (fcr the
TSS system:.

For steady state station Keeping requirements where
atmospheric effects and eccentricity may be important, the
cptimal control law with gains based on optimal ccntrol
theory can be used tc bring the system to an in-plane
aqulibrium positicn and tension level which reflects a
ktalance between the gravity-gradient and aerodynamics
torques {forces).

For moderate duration deployment the same form of th
sprimal law, where the actual gains are adaptsd continucusly
o th2 commanded length, can result in improved damping
{settling; characteristics with small amplitude initial
zxsursicns in the in-plane swing angle.

{v;  The same form of the optimal contrsl iaw as that in Uﬁ}
zan he used ex*ensively in both 2-dimensional dynamic models
‘Bainumn and Wcodard) 4] and 3-dimensionzl dynamic mcdels

:Tan Ruying and Bainum}{Sf, of the Platform-Teth=ared-Sub-

(77 Whea considering tatier mass, tethsr flex:bility, aero-
vrmimlc fcrze on zhie tather, and 2ccentyriclty oI the orbit,

1.2, a merez complax dynamic model Ior teraered systems, Ll

“rangdcag and ZTaiium s altsrnate cptimal conrtrol law made
f.reher Lagreovem::nts 1a the transient respense of bota tue
In-gElaas swWi.g aagLie oanld vikbraticn 3z ocosagarsS with oprevisus
izeliced sintrsi Laws suchoas La MocdL et 3l il7




ro...

To sum up, control laws based upon optimal control
theory offer the greatest potential for applications

involving proposed o2rbiting tethered reflector systems.
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4. NONLINEAR DYNAMIC EQUATIONS OF AN TETHERED
ANTENNA/REFLECTOR IN ORBIT
4.1 Introduction

The linearized equations of the orbiting tethered antenna system have been ob-
tained in Chap. 11, and active tether control laws (I.QR) hased on the linear model have
been efficiently used to apply active control during stationkceping of the system.
However, for the deployment abd retrieval, the linear system model may not represent
the physical situation accurately any more and the active conirol laws based on this
model certainly may not be as effective during deployment and retrieval as during
stationkeeping. This is due to the large slewing angles and inherent instability of the out-—
of-plane motion of the tether. Furthermore, sccond order termes in length rate are
directly coupled with out-of-plane modal amplitude terme. Ilence (o damp the out-of-
plane motion using length rate control ( tension control ) and to simulale the dynamic
behavior of the system during the deploymeni and retricval. it is necessary to use the
nonlinear equations.

The general dynamics of a tethered system is rather complex and hence, early
dynamical models were based on a number of simplfying ascumptions. An overview of
the development in this area, particuraly system maodels and proposed control laws, has
been given by Misra and Modi [14] and Bainum and Kinma+ [ 15]. The system models
have grown [rom initial massless idealized tether models to complex representations cn -
compassing all the tether vibrations ( flexibility ) and end body motions, as exemplied in
the model by Misra and Modi [14].

As for the iethered antenna/reflector svstem. the translational motions of the
subsatellite and transverse vibrations of the tether will affeet the rigid body motion of the

orbiting antenna; therclore, all these effects will be included in “he formulation of the
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nonlinear system equations for the further study of simulatirg the system dynamic be

havior and applying active control during the deploviment and retrieval.

4.2 The Assumptions
The following assumptions are made to develop the model equations:
a). The antenna mass is far greater than that of the tether and the subsatellite;
consequently, the center of mass of the system mav be taken to coincide with

that of the antenna.

b). The tether is assumed uniform with a constant mass per length.

¢). Longitudinal stretching is not considered . and longitudinal vibration is
neglected compared with the transverse vibrations,

d). The shell is considered to he a rigid body.

e). The subsalellite is considered to be a point mass,

f). No random inputs or unknown disturbances arc considered.

g). Only first order gravity-gradient effects are considered and the orbit is
assumed circular.

4.3 Kinematics of the System

The coordinate systems used in the development of the svstem equations of motion
are shown in Fig. 7. Op Xo Yo Zo is an orbit-reference centered at the center of mass of
the shell, Op , with Op Xo along the local vertical and O« Y.. along the orbital angular
velocity direction, Op Zo along the orbital tangent vclocity direction.

Op XpYp Zp is a shell body reference frame, Rr . where Op X, OpYp , Op7Zp are
principal axes of the shell. OX.Y: Z: is the subsatell:tc undeformed tether reference
frame, R. , with OX: along the undeformed tether line, whete (3 is the point from which
the tether is deploying or retrieving. The coordinates of O in the shell frame are (h, 0,

0).
The Euler angles W, 0, & are the yaw, pitch and roll angles of the shell, respec-
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tively. o, y are pitch (in-plane) and yaw ( out—of-planc) angles of the tether.
For convenience, the transverse vibrations of the tether are expanded in terms of a
set of admissible functions.
v=EPa(x)Ba(t) w=Zdn(x)Ba(l) (108)
where  dn(x)=sin( nmx/L) , v—=—out-of-plane displacement of the tether, w~-in—plane
displacement.

Therefore, the whole system has the following degrees of freedom:

Y, 0, & ——-rigid body motion of thec shell.
Y ———transiational motion of the cubsateltite.
L ~——length of the tether.
Bn. Cn  ———transverse vibrations of the flexible rether.

The transformation matrices from Op XpYp7Ze 10 O X Yo Zo and O Xe Y Ze to

Op Xp Yp Zp are given by

SO

- D S
-SUSHCH+ Qb Sb SUSOSH + G Cd SrCn (109)
Qi S8 G+ SWSd — QU SO Sdr SirCh aT Q)]
] (110)
CaCy -CaSy - S«
M =
' Sy Cy 0 (i)
SaCy -SaSy Cur
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>
=0
<

r t
.1 = ol + M 1y (112)
Z Q VA

P t

where C — cos, S —-sin

The angular velocity of the shell is given by

N A ~
@p = §2 x ip +Qy]p +f).7kp (llﬂ
where . i
Dx=PYCOHCH +0Sh+we (S SOCHH K dh)

Qy=0Cod-PCOSdh+twe (SUSHS H & C b (114)

Qr=db +r S0 - SUCO

The angular velocity of the tewer is given by

~ ~ ~

Dt = ox it + 0y jt + w2 Ke (1135)
wx = CaCyQx+ SyQy+ S Cy Q. Sy o

wy =— CaSyQx+ CyQy— S SyQ,+ v i (116)
we =—Sax Qx+ Caxfla+y ‘

4.4 Dynamic Equations of the System

4.4.1 Rigid Body Motion of the Shell

The Euler-Newtonian method is nsed to deveiop -he dyvimical ecauations of the shell

motion.
The angular monentum of the sheil is given by
- ~ ~ ~ .
N = T {2eip + ]yy(lyjp + [220) k? (11T

The time derivative of the N i« written as

d ~ Pa ra)
N = [ Tt Qx=(ln--127) 0y (2 ]ip R [ va Q,y“”:r—'«‘“~< “! | N P O '”w"l\vy)flx ().y]kp

There are two feorces acting on the shell, one i< the gr viational foree, tive other

tether tension force, 1. Therefore, the torque exerted on the shall e

D —————————————————————————

(118)




L=1lc+1r (119)

- a—
where L is the gravitational torque and [.r is the torque of 1he tether tension

force.
T . n e
Lr=-hTsina cosy jp + hTsiny ke (120)
Here, we only conside: first—order gravitational forces i well known that the

first—order gravitational force acting on anv point P(x.v./) in the shell can be cxpressed

{71 in the shell frame as:

2 2 2
3G -1 -3 @ Sh G NENINE (I Q
o= 2 2 2 A
= odm | 3 pso 3 @Sh- 1 10 (1 S ’ (121)
(2
: 7
-3 50 Q) Cod 3 Sh (D S iy i
Ience, the torque of the gravitational force
3ISODMSH T b
T _f rsedf = 2 - bk
to=frxd =1 3s0macr -1 ) (122
2
SA@SAGH T - 1 )
According to the FEuler-Newtonian cquation, we obiain
I © (1 -1 )Q Q =3w2SHmsh | [
xx X vy 7z y 2 -
I 0 =(1 =1 )30 Q.= =hTSe Gy - Vo st ~1 ) s
vy y 77 XX x 2 v XX (11._7)
O =(1 =1 )02 0 = NSy ~3wm MShG 1 - ] )
The ahove are the nonlinear dvnamical equations for rhye bl
4.4.2 Translational Motion of the Subsvsicm (tether and «-heasellite)
The Langrange approach is used to develop the dyvnamecai cquations of the transla
nonal morions of the suhsvtem. Therefe = wa need "o cactlve he Kinetic and potential
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energy of the tether and the subsatellite.

A). Klnetic Energy

The velocity of any point Q(x,y,z) on the tether i< of the (ollowing form:

V=Vo+aXT +T0
where

—SozC'yQy +SryQ7

I,
Y,:h{ SaSyQy+CyQZ + 0
—Coz.Qv 0
) W -v
w
© XT ={ -w 0 X }
t t )
\ -X 0
(v)‘
T A
0 X
- . N
r( = \% ‘](
) A
w k(

Hence. the kinetic energy of the tether is given hy

L

124

| (125)

> —> =

127

{126)

- 1. - I o ' -
T, =5 pRPdx =-3f pRfdx+ -3 Fpld x| & -bppit tax
Loo_ - Lo . L e om = (128)
+JD v“-(wlxrl)dx +[p vu-rldx Hoplw xrover dx
where
1 m 22 I N .
T o=35-4p Ffdx = 7—'[ N +h QL+ Zhe im0 = <ire cosy () L2
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vz+wz —-XV -w
=l p xF léx:—l—wrj' X A F T
2z t t 2 t p t
—-Xw - ¢ +\;

m 2 2 2 2 2 2
ot 1. 2 Lo 1 . o Lo, 1 2
37 [3E(B +C &+ (-3 +-32C v g+ 52 B

2L (-1 2 le (1) ¢ _ :
+ 22 T anxwy+ =2+ C 0 o -Z B ( K wzl (130)
T =~k [ o( v fw]|?)dx
where v=5 sin—n—}T—x—ﬁ - _1_7_211 Z nxcos —1—7}3 3
- o 2 " (131)
w =X sif ¢ - —E—I’-Z nx cos T ¢
T, n I,Z l. n
0
_ _ — T
T =1JpV (& XT)de =V fp| ~w O a< v
v -x 0
R R
=m‘{ - —% Qy(‘)x { sinacsiny 2 ltr% 1] G, F cose X H(-”JJ B,
h T+ R L
- —E—QZ @ COosY Zliiﬁ-'lj-—c n + N Qyw y[—[j‘—c(wn _1—: <INy coRvy Zl-t&h—]—fz;] ]
(-1 !

1
h_ 1w ysiny Z—l—t}_—ljﬁcn +h Qyo)z [—%’—«'inﬂ ity _'_ SUwe cosy T-— ﬂn ]

4+ =
™

IV FYCS DA L L1
o Z_——HL_j A =0y L Gy

FhQ o [—-%—cnsy -

(1"
-3 = A —L Bn w |}

k4
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J}H .

P N AT . . 1+(~1 - 1+ (=13
TS—J' pVa . T dx = - Qy[ sin o simy Z'_‘ng"' Bn coxx Z-—%—-y: Cn +

; 1 : Wi
sin o simy ( —-Ilf ) thhg_—lik B, - cosx ( -%— ) -]—+T$-_~l-{~ ool (133)
m h 1. : 1
- L, ol+(-
r oo, (3R R e 2

.

0 - \ 0

— - = — T "
TS—ID(U)(X[!) rl dx = (.L)(ID ! 0 X k dx

—-v X 0 W

m . A m L oy B
== 3(B_C -C B )u +-z— [Z5Hc w2 pdille o,

m L iy : _
BRI ORI & 8001 N (134)

The velocity of the subsatellite

i "
- S Gy Sy I, f 0 L
— Fad
v = : i
s {h Qy S Sy +hQ Cy ) o w } ix (135)
- Cx 0 0 w k(

Hence, the kinetic energy of the subsatellite

] 1 - 1 2 2 Z»Z .
[=-5m Y =__2——m‘[h Qy +h Q + 1

2 R rot .
S+ Tw +10 2heinacosy 1,

(136)
+ 2hsiny Q’I, + 2hLS1y(cmq Uy +sinacciny o 0 Thi cosy n,m’ |

B). Elastic Potential Energy of the Tether

Suppose the tether is an Buler=Berbou'i beam Theretore, the elastic potential

energy 1s of the fol'™ing form:
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YL

2 2
E=-4f EL(v +w! jax= -=Elsop, o0 (137)

C). First~order Gravity Gradient [Field

Since the origin of the orbital reference frame moves along a free-fall trajectory,

the only gravitational [orces acting on the subsystem aricc from the gravity—gradient field.

The gravity-gradient [orce terms are obtained by a Tavlor—series expansion of the gravity

field about the free-fall trajectory. The first—order terime of 1his series are well known.

Since Bn /L€ 1,Cna /L« ,the effect of the transver<e vibration of the tether on

the gravity force is neglected. Applying these terms to a mass particle of size dim results in

the following:

dl; =—wcz y dm
sz =—w§zdm

(138}

where ( X, y, 7 ) are the coordinates of the particle dm in the orbital reference frame, ®e

is the orbital angular velocity.

Summing up the forces over all mass particles of the dvnamial cvstem vields the first-or

der gravity~gradient terms as:

2

2 2 2
Q= 33"- +m, )(u: L2 S CxCy (Sh- (N ()

2
SaSy YD SHGH +CaSy Gy SO Q) Sh | -

2 2
S Cy (3 Ch-1)+3 CaCy SO () Co |
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(O Gy SN (D Ch +

m )
s tm Jw hl, |

(139)




m 2 2 2 2
Qy=3(—3-—‘+m’)w:Lz [ Sy Gy ( Cox @ Sh - D CH 1Sy CeS2y SO O Ch +

2 m 2 2
St 2y S8 B Sb- Cox C2y M Sb Cb |~ (=3~ + m w’hl[CxSy (3B G -1)

2
+3CyQSbCh- 3 SoxSy SO D Cob | (140)

m 2 2 2 2 2 2 2 2 2 2
QL=(-2—‘—+ms)ij[ Cox Gy (300 Cb-1)+4Sy ( 3X0 Sh-1) +Sax Gy (350 ~ 1)

2 2
-6 SxCaxCySe B Ch+ 6Sax Sy Cy SO D Sh -6 Civ Sy (v (O SHGh (141)

2 2 2
+(m +m )mZh[chG/ (3B G -1)-3SyMShh - 3SaCy SO Cd )]

Since the antenna mass is far greater than that of the tether and subsatellite, it is
assumed that the Euler angles of rigid body motions of the satellite and their rates, the '
vibrating mode shape and their rates are small ( first order terms ). thatis , W, 8, &, 2« .Sy, N2

B, C, . I;n , C':n <« 1 . Omitting the third order terms and above, we obtain the

n n

following dynamical equations:
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In plane motion

m m L lf' .
(- (—3-— +m ) Licosx simy cosy + ——=~ cosx cody ¥ el Bn ] Qx

+[(—£n‘—+m ) L*co " (-T‘—+ hl osy | Q)
7 . sy 5 m ) . cosx cosy |}

m m L l{‘
+ [-( —— + m ) L? sina siny cosy + —=—— coxx sity I -t Q
3'

m 2 m L m cosy .
o 2 5o+ Ll s L—_d’ S oh ot _Lﬂ:i -
+H( —3=+m )L'cosy o + -—z-sine X4 C oy b T Z—py-CL
m, L cosy _ m ;

L d‘ -( —3-—-+ m_ )L since cose cogy

m L

m
+ [=( —j‘— +m ) Lisino siny cosy + -——;,7-( coqx <y ¥ ~—'—' Cn

Y

. 2 L—l_f m‘ 2
+sinoc cosy T = Bn )Q’ny + {( -3+ m, W E oo cnay

m m 2
+ (—~5- + m_)hL cosx cosy [ Q + [(==5- + m bl <inec cosy

m h
+

1 2 m
cosx & —Lt%l-lf— Cn ]Qy+ [( -3--‘+ m W cosy simy cosy

m L

-1f !
- ——-‘T?—cosoz cos2y X L B ]Q Q + [( ———+ m )7 sinee cosar cosy

m 2 2
+ (—-2-‘— + mg)thinoz cosy ]Q,, + 2( -3'—'4' m_ N2 cosr simy Q‘ Y

S s W ; BUCTi - R
- Sinac siny z o Bnﬂya 20 ( =+ m, 1 simy cosy
+ (-T'— + Jhl. cosox sty — T—‘-I— coly T eif n
2 m_Jal. cosx sirry m ey n n
m h ol , m ,
+ ——5— cosx cosy z —l—ﬂn—lf Bn ] Qy v = 2|( —j--‘ +m I siny cosy
mL -] . .o mn nf‘ c O e
- mFTeoly TS B booy + TR0y IR B Rt
m 2m . 'IP
- [ 2 (=== + m )lcos siny cosy - —5—*‘ coar endy TS0 1

m | . m N
T, el M e
+ —pcosx X -~ Bn]()x I +2[( 5=+ m ol oy

m R
+{ m +m )hcosa cosy | le,—Z (——2—‘— + m()l,cim Sitry cosy (27!,
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m 2 . m siny joad . .
o 1+3(-1j . .

+2(-—5- + m )Lleosy al - ( --5—-Z ~——nL——— C+ S<owzIBC )y L

m_ cosy .. 2m L 2 .

: 1+3(-1] _cm . -1f

+ - z n CnL = coxx siny X A In Q.

m L 2mh )

S Sy (| o S R L TCTE AR
+( - sin2y T a Bn & ~—cosa simy pX n Hn )Qy

2m L . 2m I on .
- ——T?—‘—— sinac simy °E L—El-f B Q + ——ﬁl——sim cowy I (»,—1'—? B«

2m L

S S ‘ e e o N
+ cosa simy & = Cn ¥y Qoz (141)
Qut-of-plane motion

m, ) m‘L L-!P ) R m .
[-( -3-+m } L sino + —=5~ COS cosy z 5 C | R m _)hlcosy Qz

m . m L - m_cosy 'e
+H 3=+ mq)LZ Y+ (-5 simy 2 Lr-l-l—P C - —“=—ZRC 1«

m Y m | m

. I
B G 3 teo—st o ¢
=L B4+ -3+ m Il fcow coy

m 2 m
+ (-—2-'- + m‘)hL cosox cosy | (7‘Qy + (( _3._' £m M. iy cosy

m, . m, L [l
+ (-=5— + m_)hL cosx siny - ——=~-coly £ 7~ B

m h -1 2 m
t 1+ —lf t 2 .
+ g cosx cosy X ———,()-—' - Br‘ ]Qy + {( —§—+ m S ciner cnRy

m, ~ m,h e M
+ (——2-—- +m_ Jhl.sino coso cogy + —5" cos2y Z e O
m L 1] m . 2
~ ——7— COSXt CO8y z A Cn ] Qy().l +{ -2 -3-Fm M= coa siny
2m L . 1 ° m, 2
+ —z—— cosx sin2y ¥ a Bn ]Qx(x + {( -t m M oein 2y
mt : Zmlh I‘t-~|P”
+ 2(==5— + m )hl. cosx siny - ~-—=-coxxcosy T C g B

2m L. m .

! L—lf 2ot ! A
- mmmCoy DAY B & - (37 m ) sie &

m m, '
+ (——2'[— + m _)hLsina cosy Qy ¥ = (--3= + m_Jhlcimy (1 v
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-

m I. % 3
+ (—3—- +m )L siny cosy o + —=—cosy £ (-—'-P C oy -%Z —(n—-'—£ B L

n

m m
(-2 (5~ + m_ )Lsina+ -—=- cosx cosy E H3‘(—” Co I

m, siny .
> ‘*&-f G- §EBG Il + Mty —‘f»-‘—fc &,

m . m _ .o 2m
+2-—5- +m)LLy- -3 l*—’-(ﬁlf B I+ -t mcow cosy £ & f ¢ a
2m L
S Y L__lj“ =
+ - smyZnCnQy Q_y (143)

Stretching equation

m .
(m+m) Lo+ ——--[smchl 3—(—1)23 - cosx siny ¥ '——1—:;!"—( |

Cae m

m : .
+[-( m + m_)h sincx cosy+————cmy2——-*n~ PL;\ : -;-(-;lqcmz lﬂ—l{ﬁ ]Q

m m +1
. 1-3(-1 v ey t+-if )
+ [( m + m )hsiny - —-—TT‘— cosY Z———I(T—an A B B KA T e et B | Q,

m e Lom e o 2
+ —-1?‘- cosy X Laef C a- ——E‘-z ‘__3Jn_lf13n Y+l 5 ¢t m )l {cosxcosy - 1)

n )
2m _f 2m - P 2 m
+ —=- cosar siny cosy £ §_ B + ——-<ma cosx cosy T -~ (| Q + ( 2(——2-‘—+ m )L
m 2m

! 2m
coxxsinmy cosy + (——2-—+ m Yh sity - _1_1_ cosx coy T ']n ¢ --———cmu sittyy & L—j‘(,

2 _ gl m 2
+ —%h—cosn cosy Z —l-t-r(l-—lfi Bn ]Q,(.Qy + [(——2-’—+ m Il sin 20 covy

am
t

-~
1]

colrecosy X L 'P C

m( . m| . . (1 0
+(—-—2-—+ m_ Jhsino cosy + -—5~ sin 2asin2y £ . B ,

m

1 m ?
+ —%D——cosa % —Lﬂn:lz— Cn ]Qx()7 - [(—-—2-‘— +m heosy + 5 m_)h cosax cosy

1 2m .
+"22'+ ——-emv LOWZLI-? B+—1'ico‘n siny ¥ - “( ! '”i

n

m 2ml b
+ [(——2-'—+ m )L sinoc sin2y - —z= sinat coy ¥ L; k]
1 2m
+ —%11 SIN COSX COSY & -I—J':—-flf— Bn — —T—r—' cosesimy T " ;‘ | 1)\})7
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m : m , m :
-[(-=3-+ m )L cosx + (——5~+ m )h coxxcosy | {2’ - —5~+m )l.cosy «

m Y 3 S m . m )
- —T—T—' siny & -’—%lf: Bn a vy - (—-7‘-—4- m‘)l, y1+ 2(—-5" + m_)l.cosaxsiny cosy Qxcx

m m !
+ [ 2(-—5~+m ) Lsin - -==cosx cosyX —l—’“{flr—C Ly

n

m am m h
-[ 2(——2-—+ m_)L cow +( ——ar—+ 2m )hcosx cosy | ok [——I—smozsmy

m h )
may e Mo e :
+ —=sina cogy 2z 0 Bn = simy2 o (,n | € v

+ [(—[-n‘—-t- m )L sina sin2y - -Z-T—’ in co2y GII
5 L sin2y - —=-~si 2y £ B

m _, ol ) m h m
- -5~ cosasiny I —l—tf_l—lf— Cla a+ [——-‘7— cosy - 2= 5-+ m_)L cosx

mth'
T TR pX

m ;
”( Tl B - - sinccosyE —l—t(—lgt(} |y

i, ';“‘ ot S .-L*.%‘Lfi B oo - _;‘; s _l_’*_%‘lft' By n o ECII MDY
+—;—cosy2—--(~lfc a = T+ Q (1)
4.4.3 Mode Equations of the Tether

The vibrating modes are coupled with the other degrees of freedom. They satisfy
the following equ=ilons:

Out-of-plane mode

m .. pB .. mh [1-(-1] | . . m .
—2-—13 + -—3-— [ + 'n: - [ sincc sin oy Q4 osy Q| - ——2—'— C,o,
m, L . N
- _—r_r— L 15 @ - _2'__ ( r?l“’ . (' Lh w omo by ", "G W ow 2G, @)
m h (1-(-1] | .
+ = M ( coxx W Qy - sinac cosy @ )k siny m () +cosa siny )
. . S P'[ . _ m h [1-(-1f" ]
+sinacosy y ”’.,- Sy y 2 B - Com —j-~-- e U A
. 4y5:
cosx 2 - sinx (2 )L + -7—7—-!“—‘- Bn = 0
? ’ 2L (145)
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In~plane mode

m .. p %L _mlh [1—(—151 ] . m . m L (-1

t
c R [, S,
COS X Qy + 3 BH (l)‘ w

—! 2 2, 2L (=) _ .
z ( (;1 wx + Cn (1.)y + ki n ("L w,_ Bn U)y ('{_ Hn t ]+
(sinc Q) +sinacosy wl —-sinyw +sinasinyw (1 +cosy w 2 )
y y vy Yy 7 < v ) R

mh(l-¢-1] . B . pGL '
— - o L+ 5t me+——821—- fTEL 2 (146)

4.5 Conclusion

The nonlinear dynamical equations of the tethered antenna system have been
obtained. We can see that all the degrees of freedom arc coupied in the equations. From
Eq. (142) and Eq. (143), it is seen that the in—planc and out-of-plane motions are
coupled through second-order, and also coupled with the {lexibility of the tether. The
dynamical behavior of such a compiex system ( including altitude motions of the satellite
and flexibility of the tether ) has never been studicd hefore. Next <tep of our research will
concentrate on the simulation of the dynamical hehavior of the svstem during the deploy -

ment and retrieval.
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Fig. 7 Coordinate systems used in the developmaoent of nonlinear dvnamic equations
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Chapter 4

Some integrals used in this developmen::

L L 1
- L _TX = L« 1+(~1 r+
(1 {vdx—(j}‘ism T-B, dx = -3% =5~ B
L L T+ |
= $sin X ¢ gy - Les 1HIT
(2) {w dx ~£’ Z sin =7 G dx =2 ==
L L 2 n
= in M B gy = - Ls (1)
(3) £ xv dx = {x Zsin Bndx = = ; Bn

L L 2 1
- in X -2 L =1
(4) g‘ xwdx = fx Zsin —L—Cn dx Faap) C

0

L L
(5) brvw dx = —2-—-2 Bn Cn
(6) Jvidx =-k- 3 B2
7)  widx = & 2
(7) J widx = —2—-2 q,‘

L
e _ .
(8) J x cos=r=dx = ; [ -1 =11
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5. CONCLUSIONS AND RECOMMENDATIONS

The system linear equations for the motion of a tethered
shallow spherical shell in orbit with its symmetry axis
nominally following the local vertical are developed. The
shell roll, yaw tether out-of-plane swing motion and elastic
vibrations are decoupled from the shell and tether in-plane
pitch motions and elastic vibrations. The neutral gravity
stability conditions for the special case of a constant
length rigid tether are given for in-plane motion and out-
of-plane motion. It is proved that the in-plane motion of
the system could be asymptotically stable based on Rupp's
tension control law, for a variable length tether. However,
the sytem simulation results indicate that the transient
responses can be improved significantly, especially for the
damping of the tether and shell pitch moticn, by an optimal
feedback control law for the rigid variable length tether
model. It is also seen that the system could be unstakle
when the effect of tether flexibility is included if the
control gains are not chosen carefully. The transient
responses for three different tension control laws are
compared during tvpical station keeping operations. The
transient responses can be further improved by including the
state feedback of the tether vibrational modes into the
optimal control law, especially for the damping of the

tether vibrations.
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Extensions to the present study could consider the effect of
the shell flexibility on the system stability and control
and some kind of active control could be introduced (in
addition to tether tension control) to improve system
performance. 2Additional control will be required to provide
for out-of-plane damping of rigid motions and vibration

suppression.

Because most of the usz2ful missions are carried out during
the station keeping phase for Shuttle/Platform Tethered
Subsatellite systems, a review of the various tether system
control laws has focused mainly on the deployment and
station keeping stages. Retrieval is less important than
the first two fcr tether reflector applications where it may
not be required to retrieve the tethe:r (except possibly
before rapid maneuvering). Although some nonlinear control
laws were proposed (especially thocse which include thruster
augmentation of the tether tension control), 1t may still be
iifficult to implement an efficient and successful retrieval
for the tethered reflector system and further study is

suggested.

For deplovyment, the activz tension modulation schemes
proposed by Rupp and imprcved by subsequent investigators
are mere 2fficient than the purely passive scheme advocated

=y ¥an2 and Leviason. A tension control law, based on a

szmbination 2f e2xponential and uniform rate of tether




length, as a commanded length rate can be used both for in-

plane and out-of-plane motion control during deployment.

Out of the various active control laws for proposed station
keeping of orbiting tethered reflector systems, Rupp's
control law is the most basic and is effective in
controlling in-plane motion, but not adequate for out-of-
plane motion control. Control laws based on optimal control
theory offer the greatest potential for applications
involving proposed orbiting tethered reflector systems.
Alternate tension modulation optimal control laws based on
both in-plane tether swing angle and vibrational state
information can result in further improvements as compared

with Rupp's control law.

For out-of-plane motion control during station keeping
a combination of tension modulation in the tether plus other

forms of control {(such as the use of thrusters) will be

required.

Finally , a pvreliminary model of the nonlinear dynamics of
the orbiting tethered antenna/reflector system has been
developed based on Lagrangian formulation. The resulting
equaticons &re highly coupled and for deployment represent a
set of non-autonomous differential eguations. For this
mcdel the shell was considered to be rigid, but the mass and
£12x1ib1lity of the tether has been taken into account.

Thecse equations will be used in the next phase of this

731—




effort to simulate deployment dynamics and compare the

performance using different control strategies.
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